SOUND
PLAY
GROUND

Design Development Package

Jami Sparano

MA Exhibition and Experience Design

SUNY Fashion Institute of Technology
Symbols List

1. Title Reference
2. Scale
3. Drawing Title
4. A/V Reference
5. Lighting Reference
6. Material Reference
7. Graphic Reference
8. Wall Power Receptacle
9. Floor Power Receptacle
10. Ceiling Power Receptacle
11. Detail Callout
Executive Summary

Thesis Statement

Sound has the power to impact human consciousness on neurological and psychological levels, thus altering our lives more profoundly than we may readily acknowledge.

Particular sound waves, or frequencies, at the core of soundscapes and musical compositions, influence thoughts, feelings, and expression in ways that directly inform how people will engage with the world around them.

By understanding the relationship between sound frequencies and human consciousness, experiential designers can harness the effect(s) soundscapes have in fabricated environments and how they can be composed in order to affect the quality of group dynamics, enhance learning outcomes, and aid in audience wayfinding.

Big Idea

This exhibition will demonstrate how sound frequencies can shape our conscious states on neurological and psychological levels, i.e., impacting mood, behaviors, and cognitive processes. Through this, people will gain a deeper understanding of themselves in relationship to how sound operates and how it presents itself in everyday life.
Executive Summary

Museum of Science

“As science and technology increasingly shape our lives, the Museum of Science strives to equip and inspire everyone to use science for the global good.

The Museum’s singular location connecting Boston and Cambridge puts us at the junction of some of the world’s most influential academic institutions and industries, local and state government, schools, and the public. Trusted by each sector, we are ideally positioned to convene, inspire, and create meaningful experiences for all.”

- MOS.org

Mission
To inspire a lifelong love of science in everyone.

Why MOS?
The Museum of Science is the perfect place to house Sound Playground due to its wide audience net as well as opportunities for adequate acoustic control.
Executive Summary

Museum of Science

Level 2
- Green Wing
- Blue Wing

Level 1
- Red Wing
- Green Wing
- Blue Wing

Lower Level
- Green Wing
- Blue Wing

Site Plan and Photos

Project
Client/Location
1 Museum Of Science Driveway, Boston, MA 02114
Blue Wing on the lower level

Designer
JAMI SPARANO
Jami.Sparano@gmail.com
JamiSparano.com

Scale
NTS

Plan Location

Notes
DRAWINGS FOR DESIGN INTENT ONLY

Page Number
EX.102
Executive Summary

In collaboration with

The National Science Foundation

Mission
To promote the progress of science; to advance the national health, prosperity, and welfare; and to secure the national defense; and for other purposes.
Target Audience

Primary:
Massachusetts 4th-grade students following the state’s Science and Art curriculums that introduce properties of sound and music

Secondary:
Families and caregivers with children

Tertiary:
Boston tourists looking for a way to stimulate their city experience with something fun, educational, and unique
Exhibition Goals

Visitors will learn...

- What sound frequencies are and how they play a considerable role in shaping our consciousness, i.e., mood, behavior, identity, and decision-making
- About the relationship between themselves and the soundscapes that are around them
- How sound functions at its very core and how humans process it from neurological and psychological standpoints

Experience Goals

The audience will experience...

- A number of playful and informative activities that will break down sound frequencies by their functioning, processing, and visual properties
- Soundscapes that are intentionally designed or pulled from real-life scenarios
- A heightened awareness of the impact that sound can have on them
- Ways to interpret sound outside of hearing

Project Goals

This exhibition aims...

- To help audiences gain a deeper understanding of the sonic worlds they occupy by learning the functionality of audio frequencies in relationship to how humans process them
- To demonstrate a unique way to assess environmental soundscapes
- To look at sound through a lens that blends neuroscience and psychology
- To equip the audience with new ways to think about sound

Executive Summary
Executive Summary

Interpretive Approach

Sound Playground is a children’s exhibition that aims to raise awareness of sound and soundscapes. In turn, this heightened awareness will help younger audiences gain a better sense of themselves and the world(s) they inhabit through a unique and often overlooked lense. Awareness and perception are the key to individual consciousness. To create viable connection between sound and an individual’s psyche will help to facilitate greater bonds with one’s inner self.

The visitor experience will begin with entry moments that encourage people to think about sound along with an overview of soundscapes and how they appear in everyday life. Then, the audience will weave through various high-energy and low-energy activity zones, creating a rhythmic passage that allows for moments of action and reflection. Each activity will highlight a different facet of sound and its affect, as well as multiple ways to interpret soundscapes.
Executive Summary

- Direct and measurable effects sound has on people and how it impacts their consciousness.
- When sound frequencies are arranged into musical compositions.
- Ways to think of sound by describing its aesthetic properties, ways to read it, measure it, and how it is visualized.
- How sound works at the macro (frequential) level.
- Common uses and effects of soundscapes within everyday life.
- Conditions that are subjective.
- Auditory disorder considerations.
- Learning styles and teaching methods for adolescents that work most efficiently.
- How sound is processed and how it effects people psychologically / neurologically.
- Sound that is a product of or made to fit the sonic narrative of an environment.
- How sound is used for youth learning.

Concept Diagram

- NATURE’S NEURO-LOGIC
- ENVIRONMENTAL SOUNDSCAPES
- FREQUENCY FUNCTIONING
- MUSICAL COMPOSITIONS
- VISUALISING THE MOVEMENT
- SOUND SIMPLIFIED
- INDIVIDUAL BIAS
- HEARING HANDICAPS
- ADOLESCENT LEARNING
- SOUND FOR YOUTH COGNITION

How sound works at the macro (frequential) level.

Ways to think of sound by describing its aesthetic properties, ways to read it, measure it, and how it is visualized.

Common uses and effects of soundscapes within everyday life.

Conditions that are subjective.

Auditory disorder considerations.

Learning styles and teaching methods for adolescents that work most efficiently.

How sound is processed and how it effects people psychologically / neurologically.

Sound that is a product of or made to fit the sonic narrative of an environment.

How sound is used for youth learning.

Direct and measurable effects sound has on people and how it impacts their consciousness.
Executive Summary

Concept Floor Diagram

- Hearing Handicaps
- Nature’s Neuro-Logic
- Environmental Soundscapes
- Visualising the Movement
- Individual Bias
- Sound for Youth Cognition
- Musical Compositions
- Sound Simplified
- Sound Effects
- Frequency Functioning

Storage

Notes
DRAWINGS FOR DESIGN INTENT ONLY

Client/Location
Museum of Science
1 Museum Of Science Driveway,
Boston, MA 02114
Blue Wing on the lower level

Designer
Jami Sparano
Jami.Sparano@gmail.com
JamiSparano.com

Scale
NTS

Plan Location

Page Number
EX.108
Executive Summary

01. Sound Will Bounce
Teaches about sound’s ability to bounce and reflect.

02. Frequency Slide
Demonstrates different sound waves and their energetic associations.

03. Become the Sound
Embody frequencies by climbing through an abstracted ear canal.

04. Hair Cell Swings
Learn about hair cells and neural-transmitters on replicated swings.

05. Sound Sensation
Hearing loss simulation that explores bass tones through tactile elements.

06. Chromesthesia Sketching
Pressure sensitive fabric wall that mimics synesthetic perception via artistic gestures.

07. SpectroGram
Screen that filters surroundings into spectrogram style image.

08. Chladni Sandbox
Sound visualizations via Chladni plate style sandbox and frequency tuner.

09. Ambient Thumper
Tactile strings programmed to play various elemental soundscape elements.

10. Emotion Composer
Emotional valence responses to given prompts that create a greater sonic composition.

11. Sound Simplified
Exiting experience playing everyday soundscape.
Executive Summary

Energy Diagram

Very High
High
Neutral
Low
Very Low

Enter
Exit

Storage
Entry Experience

Programming

Introduction wall via the blue wing lower level hallway. Glowing dimensional text welcomes the visitor.
Programming

Introduction Wall

See
Large scale graphic walls leading the audience into the space.

Do
Read about soundscapes as well as reflect on own knowledge of sound.

Learn
About what soundscapes are and how they present themselves.
Programming

Introduction Wall Detail

Detail of curved introduction wall

Have you ever considered how sound feels? How it looks? How it works?

Sound defines so much of our lives and we hardly realize it.

Open your mind and nevermind your ears; Uncover the worlds around You at Sound Playground!
Programming

Overview shot of Frequency Functioning
Programming

See

Guests will see various sized trampoline pads embedded into it the rubber flooring that are colored differently from one another.

Do

Jump on each trampoline to see how they differ in bounciness and how the lights react to their activity.

Learn

How sound waves differ in bounciness and how that causes them to react differently with their immediate environment.
Programming

Frequency Slides

See
Guests will see 3 slides, each with various degrees of curvature which depict high, medium, and low-range frequencies.

Do
Go down all of some of the slides.

Learn
About how sound waves move as waves and the corresponding energetic and sound properties for each given frequency range.
You are The Sound

Programming

See
A massive jungle gym with touch reactive tensile fabric and glowing spiral that’s meant to replicate the inner ear canal, drum, and cochlea.

Do
Climb through the structure, push through the drum, and twist down the cochlea.

Learn
About how sound travels through the inner ear and the various obstacles it meets along the way to get to the brain.
Programming

Hair Cell Swings

See
Various abstract swings that fall from the ceiling and extend from the larger playground jungle gym.

Do
Sit, twist, swing and sway in a number of fixed motions.

Learn
About the hair cells in the inner ear that send neuro-signals to the brain and differ depending on their movement.
Programming

Sound Sensation

See
A mix of various shapes, handlebars, and seats made of hollowed-out coated aluminum.

Do
Interact with, sit upon, lean against, or hold various shapes and experience the feeling of their inner frequencies.

Learn
About how those with hearing loss experience sound as a physical sensation when in the form of low-bass tones.
Programming

Chladni Sandbox

See
A playground sandbox with clear flooring that looks through to a frequency-reactive vibrating plate with sand “dancing” to different Hz.

Do
Shift lever between difference Hz and see how that affects the pattern of the sand below.

Learn
About resonance of materials and sound, the history of the chladni plate, and a way sound has been classically visualized.
Programming

SpectroGram Screen

See
A curved screen that shows its immediate surroundings. Changes in color and depth as the sound in the environment changes.

Do
See how the visualization changes based upon the pitch, volume, and amount of sound happening at once.

Learn
How sound is visualized from a mathematical and data driven standpoint.
Extended programming of the Spectro Gram screen available on Instagram and the MOS website. Works with a phone camera and microphone to apply the Spectro Gram filter onto the immediate environment based on sound input.
Programming

Chromesthesia Sketching

See
Large tensile fabric wall with projected imaging, hanging headphones, and a box full of digital drawings tools.

Do
Put on the headphones and draw your visual interpretation of the ambient music on the fabric using the digital drawing tool.

Learn
About how those with chromesthesia make sense of sound as well as interpret the sound in a visual way for yourself.
Programming

See

Sculptural string structure enclosure and overhead speakers.

Do

Pluck strings or stum many. Listen to the natural sound bites that play from overhead and create a thundering or peaceful sonic landscape.

Learn

About how it is the accumulation of many diverse sounds and sound frequencies that make up an entire soundscape.
Programming

Emotion Composer

See
A large wall with multiple knobs that people can turn in response to a prompt asking them how strongly they feel about a given scenario.

Do
Turn the knobs in emotional response to the scenarios that are listed beneath them.

Learn
The correlation between emotions and different sounds and tonalities. Celebrate individuality by helping make a symphony with others by contributing to a greater whole.
Extended programming of Emotion Composer available on the MOS website. Prompt asks user how they are feeling and accepts up to 150 characters. The prompt is fed through AI software that translates the emotional input into a cloud visualization and corresponding sound bit that matches the emotion. The more emotion that is input by individual users, the greater the symphonic moment.
Exiting experience of the exhibition. Full circle moment with sound cones playing various enviromental soundscapes.

Gets people to reflect back on the soundscapes at home and around the world and what thoughts, emotions, memories, or smells that the soundscape may trigger and why.
Graphic Type List

A Self-Adhesive backed 3M ink jet print with matte finish (applied to wall with edge return capture)
B LED’s encased in white frosted 1/3” acrylic (screw mounted to wall)
C Dye-sublimated print on 1” thick aluminum panel screw mounted to curved 3” chrome wrapped aluminum pole
D Dye-sublimated print on 1/2” thick aluminum panel screw mounted to chrome wrapped 3” aluminum pole
E Flex L.E.D lights cased in 1/4” frosted acrylic on 1/3” acrylic base (stand-off mount)
F Flex L.E.D lights cased in 1/4” frosted acrylic on 1/3” acrylic base (suspension wire)
G Chrome wrapped 3” pole with welded 1/4” aluminum dye-sublimated signage extensions
Schedules

Graphic Schedule

<table>
<thead>
<tr>
<th>Section 00A</th>
<th>Sign Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00A.GR01</td>
<td>B</td>
<td>Introduction Wall Shapes</td>
</tr>
<tr>
<td>00A.GR02</td>
<td>B</td>
<td>Logo Lettering</td>
</tr>
<tr>
<td>00A.GR03</td>
<td>A</td>
<td>Curved Introduction Wall</td>
</tr>
<tr>
<td>00A.GR04</td>
<td>A</td>
<td>Soundscape Introduction</td>
</tr>
<tr>
<td>00A.GR08</td>
<td>G</td>
<td>Park Signage</td>
</tr>
</tbody>
</table>

Section 01A | Sign Type | Description

01A.GR01	A	Blue + Purple Gradient
01A.GR02	A	Purple Frequency Graphic
01A.GR03	C	Frequency Area Introduction
01A.GR04	D	Sound Area Directive
01A.GR05	F	Frequency Title
01A.GR06	D	Slide Directive

Section 02A | Sign Type | Description

02A.GR01	A	Back Curved Wall Graphic
02A.GR02	D	Slide Directive
02A.GR03	A	Back Curved Wall Graphic

Section 03A | Sign Type | Description

03A.GR01	A	Back Curved Wall Graphic
03A.GR02	F	You Are Sound Title
03A.GR03	A	Back Orange Graphic
03A.GR04	C	Neurologic Area Introduction

Section 04A | Sign Type | Description

| 04A.GR01 | D | Swing Directive |
| 04A.GR02 | A | Hair Cell Wall Graphic |

Section 05A | Sign Type | Description

05A.GR01	A	Curved Blue Wall 1
05A.GR02	A	Sensation Direct
05A.GR03	A	Sensation Information
05A.GR04	E	Handicap Title

Section 06A | Sign Type | Description

06A.GR01	F	Chromesthesia Title
06A.GR02	A	Chromesthesia Directive
06A.GR03	A	Blue Wall Graphic Wrap
06A.GR04	A	Chromesthesia Information

Section 07A | Sign Type | Description

07A.GR01	A	Spectrogram Information
07A.GR02	F	Spectrogram Title
07A.GR03	A	Graphic Wrap

Section 08A | Sign Type | Description

08A.GR01	F	Chladni Title
08A.GR02	A	Chladni Information
08A.GR03	A	Graphic Wrap

Section 09A | Sign Type | Description

09A.GR01	C	Soundscape Introduction
09A.GR02	A	Graphic Wall Wrap
09A.GR03	A	Soundscape Directive
09A.GR04	F	Thumper Title

Section 10A | Sign Type | Description

10A.GR01	A	Curved Graphic Wall
10A.GR02	A	Content Wall
10A.GR03	E	Emotion Title
10A.GR04	A	Directive Prompts
10A.GR05	A	Emotion Scale Graphic
10A.GR06	A	Directive

Section 11A | Sign Type | Description

11A.GR01	A	Soundscape Reflection
11A.GR02	A	Graphic Wrap
11A.GR03	B	Exit Sign
Material Schedule

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Material</th>
<th>Thumbnail</th>
<th>Manufacturer</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Acoustic Carpeting</td>
<td></td>
<td>Soundfold.com</td>
<td>Spread across main walkways</td>
</tr>
<tr>
<td>M2</td>
<td>3/8” Playground Rubber Flooring</td>
<td></td>
<td>Rubberflooringinc.com</td>
<td>In high activity zones</td>
</tr>
<tr>
<td>M3</td>
<td>Temporary Wooden Wall</td>
<td></td>
<td>In House Fab</td>
<td>Along corners of existing walls and center of exhibit</td>
</tr>
<tr>
<td>M4</td>
<td>Powder Coated Aluminum</td>
<td></td>
<td>In House Fab</td>
<td>Stairway and main slide structure, playscape</td>
</tr>
<tr>
<td>M5</td>
<td>HOPE</td>
<td></td>
<td>Curbell Plastics</td>
<td>Slide and swings</td>
</tr>
<tr>
<td>M6</td>
<td>Steel Grating</td>
<td></td>
<td>Oninamotais.com</td>
<td>Stairs on slide and slide upper deck flooring</td>
</tr>
</tbody>
</table>

Project:
- **Client/Location:** Museum Of Science Driveway, Boston, MA 02114
- Blue Wing on the lower level

Designer:
- JAMI SPARANO
 - jami.sparano@gmail.com
 - JamiSparano.com

Scale: NTS

Plan Location:

Notes: DRAWINGS FOR DESIGN INTENT ONLY

Page Number: EX.302

Jami Sparano_Sound Playground Design Development Package

Fashion Institute of Technology
Lighting Schedule

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Fixture Type</th>
<th>Thumbnail</th>
<th>Source</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Color Changing Flex L.E.D. Strip</td>
<td></td>
<td>Novaflex.com</td>
<td>In overhead shape fixtures, shape fixtures, logo fixture, signage, tensile fabric, chochlea spiral, chladini</td>
</tr>
<tr>
<td>L2</td>
<td>Programmable Color-Changing L.E.D. Bulb</td>
<td></td>
<td>Fruugo.com</td>
<td>In casings on wall of bounce zone</td>
</tr>
<tr>
<td>L3</td>
<td>Temporary Wooden Wall</td>
<td></td>
<td>Lamps Plus</td>
<td>On tracks mounted to ceiling</td>
</tr>
</tbody>
</table>

- **Client/Location**: Museum Of Science Driveway, Boston, MA 02114
- **Designer**: Jami Sparano
- **Email**: Jami.Sparano@gmail.com
- **Website**: JamiSparano.com
- **Notes**: DRAWINGS FOR DESIGN INTENT ONLY
- **Page Number**: EX.303
Schedules

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Device</th>
<th>Thumbnail</th>
<th>Source</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>![A1]</td>
<td>Niles HD-ICR in-Wall LCR High Definition Loudspeaker</td>
<td></td>
<td>elecronics.com</td>
<td>Embedded in walls of Emotion Composer</td>
</tr>
<tr>
<td>![A2]</td>
<td>Bose FreeSpace 7000 Pendant-Mount Speaker</td>
<td></td>
<td>rrsonals.com</td>
<td>Above entry soundscapes wall, ambient thumper, playscape</td>
</tr>
<tr>
<td>![A3]</td>
<td>Pure Resonance Audio S2-3 Micro Surface Mount 70V Loudspeakers</td>
<td></td>
<td>praresonanceusa.com</td>
<td>Embedded in walls of slides</td>
</tr>
<tr>
<td>![A4]</td>
<td>SoundTube FP620-12 20” Stereo Dual-Parabolic Sound Dome Speaker</td>
<td></td>
<td>azpereno.com</td>
<td>Over Sound Diffuser</td>
</tr>
<tr>
<td>![A5]</td>
<td>OPTOMA GT1080HDRX DLP PROJECTOR</td>
<td></td>
<td>optoma.com</td>
<td>Above chromasthesia screen</td>
</tr>
<tr>
<td>![A6]</td>
<td>Persee+</td>
<td></td>
<td>orbit3d.com</td>
<td>Above chromasthesia screen</td>
</tr>
<tr>
<td>![A7]</td>
<td>Fis Pro Indoor Curved Art Lead Video Wall</td>
<td></td>
<td>orbit3d.com</td>
<td>Spectrum Grass screen</td>
</tr>
<tr>
<td>![A8]</td>
<td>Stretch Screen</td>
<td></td>
<td>mosaic.com</td>
<td>Chromosthesia projector fake</td>
</tr>
</tbody>
</table>

Media Schedule

Project
- **Client/Location**
 - Museum of Science
 - 1 Museum Of Science Driveway
 - Boston, MA 02114
 - Blue Wing on the lower level

Designer
- **JAMI SPARANO**
 - Jami.Sparano@gmail.com
 - JamiSparano.com

Scale
- **NTS**

Plan Location
- **DRAWINGS FOR DESIGN INTENT ONLY**

Notes
- **Within slides, sensory structures, in trampoline pads**

Page Number
- **EX.304**
Graphics

Visual System

Palette
- ef46e
- e0e223
- 31c1d9
- Chrome
- 5a52a3
- 618420
- 5a52a3
- FFFFFF

Balance

Blended

Gradients
- Acoustic Sciences
- Neurological / Psychological
- Overlap

Shapes

Client/Location
- Museum Of Science Driveway, Boston, MA 02114

Designer
- Jami Sparano
 - Jami.Sparano@gmail.com
 - JamiSparano.com

Scale
- NTS

Plan Location

Notes
- DRAWINGS FOR DESIGN INTENT ONLY

Page Number
- EX.500
Area Graphic Cues

- FREQUENCY FUNCTIONING
- NATURE’S NEURO-LOGIC
- VISUALIZING THE MOVEMENT
- HEARING HANDICAPS

- IDIVIDUAL BIAS
- ENVIROMENTAL SOUNSCAPES
- MUSICAL COMPOSITIONS
- SOUND SIMPLIFIED

Client/Location
Museum Of Science Driveway, Boston, MA 02114

Designer
Jami Sparano
Jami.Sparano@gmail.com
JamiSparano.com

Scale
NTS

Notes
DRAWINGS FOR DESIGN INTENT ONLY

Page Number
EX.503
Graphics

Graphic Look + Feel Inspiration
Graphics

Graphic Look + Feel

EX.505
Sound Playground’s look + feel derives from sound wave patterns that were pulled apart and abstracted. This abstraction visually conveys sound as a multi-dimensional experience that moves beyond listening. Additionally, the forms in the logo represent organic movement and playful nature.

Chrome is used throughout the exhibit because of the way it reflects light when applied to 3d surfaces and how that resembles colorways found in sound-data visualization tools. The subsequent gradients from the light / chrome relationship are pulled and used to characterize different facets of sound and its various impacts on human consciousness.
Graphics

Boston T Wayfinding

EX.510
Docent Dress Code

All docents will receive Dickies brand white coveralls and white low-top Converse sneakers. Each pair of coveralls will have a custom embroidered Sound Playground logo and name patch so guests will be able to easily identify staff.

Staff will be exclusively stationed at the Frequency Slide with the addition of 1-2 floater staff to assist guests as needed.
Design Drawings

1. Front Elevation
 1/10” = 1’ Introduction Wall 00A GR01.B

 6’ 7’ 9’10’

 00A GR01.B

 00A L1

2. Top View
 1/10” = 1’ Introduction Wall 00A GR01.B

 65’8” 4”
Have you ever considered how sound feels? How it looks? How it works? Sound defines so much of our lives and we hardly realize it.

Open your mind and nevermind your ears; uncover the worlds around you at Sound Playground!
Design Drawings

Front Elevation

1. ¼" = 1' Introduction Graphic 00A.GR04.A

Sound affects everything.

Soundscapes, or the combination of sound to create an affect, stimulation, and a feeling that is not felt or noticed by the design.

After listening, soundscapes are a result of the interaction. Sometimes, in the form of a presentation, they are not able to create the combined effects of visual, auditory, or physical elements that are needed to create the desired affect.

When designing, visual and auditory should be on manipulating, using soundscapes to stimulate the senses.

Consider the affect these soundscapes can have. Sometimes, they can make scenes or the environment more interesting.

Make certain of the creation of soundscapes and how they can impact you and the environment.

DRAWINGS FOR DESIGN INTENT ONLY

Jami.Sparano@gmail.com
JamiSparano.com

EX.602
Design Drawings

1. **Front Elevation**

 ½" = 1' Area Graphic 01A.GR03.C

2. **Top View**

 ½" = 1' Area Graphic 01A.GR03.C

3. **Side Elevation**

 ½" = 1' Area Graphic 01A.GR03.C

4. **Front Elevation**

 ½" = 1' Directive Graphic 01A.GR06.D

5. **Top View**

 ½" = 1' Directive Graphic 01A.GR06.D

6. **Side Elevation**

 ½" = 1' Directive Graphic 01A.GR06.D

Frequency Functioning

New class sound work!

Sound is a type of energy that can be represented graphically. The frequency of sound waves is measured in terms of Hertz (Hz). The frequency of each slide corresponds to a different pitch. Each slide represents a different frequency. Frequencies are measured by the unit Hz. Frequencies are measured by the unit Hz. This makes them very interesting for musical applications. The idea is to create a playground that is able to create a musical experience, a new sound playground.

Area + Directive Signage

1. Frequency Slide 01A.GR03.C 01A.GR06.D

2. Area Graphic 01A.GR03.C

3. Area Graphic 01A.GR03.C

4. Area Graphic 01A.GR03.C

EX.603

Museum of Science

1 Museum Of Science Driveway, Boston, MA 02114

Blue Wing on the lower level

Jami Sparano

Jami.Sparano@gmail.com

JamiSparano.com

Scale

½" = 1'

Plan Location

Project

Client/Location

Designer

Notes

DRAWINGS FOR DESIGN INTENT ONLY

Page Number

EX.603
Design Drawings

Sign Reference

EX.604
Design Drawings

1. Front Elevation
 ⅓" = 1' Area Title 01A.GR05.F

2. Top View
 ⅓" = 1' Area Title 01A.GR05.F

3. Side Elevation
 ⅓" = 1' Area Title 01A.GR05.F

Ceiling bolted suspension wire mounting

Client/Location
Museum Of Science Driveway, Boston, MA 02114
Blue Wing on the lower level

Designer
JAMÍ SPARANO
Jami.Sparano@gmail.com
JamiSparano.com

Scale
⅓" = 1'

Notes
DRAWINGS FOR DESIGN INTENT ONLY

Page Number
EX.605
Design Drawings

1. Front Elevation
 1/2” = 1’ Wayfinding Signage 00A.GR08.G

2. Side Elevation
 1/2” = 1’ Wayfinding Signage 00A.GR08.G

3. Top View
 1/2” = 1’ Wayfinding Signage 00A.GR08.G

Area + Directive Signage

Neuromorphic Sensory Frequencies Simplified Soundscapes

Scale
1/2” = 1’

Notes
DRAWINGS FOR DESIGN INTENT ONLY

Page Number
EX.606
Design Drawings

1. Exploded Isometric View
 1/10" = 1’ Sound Will Bounce

2. Front Elevation
 1/2" = 1’ Sound Will Bounce

3. Isometric View
 1/10" = 1’ Sound Will Bounce

Project
Jami Sparano_Sound Playground
Design Development Package
Fashion Institute of Technology

Client/Location
Museum of Science Driveway,
Boston, MA 02114
Blue Wing on the lower level

Designer
JAMI SPARANO
Jami.Sparano@gmail.com
JamiSparano.com

Scale
1/10" = 1’ 1/2" = 1’

Notes
DRAWINGS FOR DESIGN INTENT ONLY

Page Number
EX.607
Collateral

Sound Machine

![Sound Machine Image](image)

Project Details

<table>
<thead>
<tr>
<th>Client/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Museum of Science</td>
</tr>
<tr>
<td>1 Museum Of Science DriveWay,</td>
</tr>
<tr>
<td>Boston, MA 02114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designer</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAMİ SPARANO</td>
</tr>
<tr>
<td>Jami.Sparano@gmail.com</td>
</tr>
<tr>
<td>JamiSparano.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plan Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX 700</td>
</tr>
</tbody>
</table>
Collateral

Headphones

Client/Location

Museum of Science
1 Museum Of Science Driveway,
Boston, MA 02114
Blue Wing on the lower level

Designer

JAMI SPARANO
Jami.Sparano@gmail.com
JamiSparano.com

Scale

NTS

Plan Location

Notes

DRAWINGS FOR DESIGN INTENT ONLY

Page Number

EX.701
Collateral

Socks

Project

Client/Location

Museum Of Science Driveway, Boston, MA 02114

Blue Wing on the lower level

Designer

JAMI SPARANO
Jami.Sparano@gmail.com
JamiSparano.com

Scale

NTS

Plan Location

Notes

DRAWINGS FOR DESIGN INTENT ONLY

Page Number

EX.703
Prototypes

Chladni Sandbox

Drawings for Design Intent Only

Jami.Sparano@gmail.com
JamiSparano.com
Prototype

Emotion Composer

Playing sound bits off of midi keyboard when knobs are turned
This Design Development Package was created by Jami Sparano

In partial fulfillment of the requirements for the degree of
Master of Arts in Exhibition and Experience Design

December 2022

Peter Hyde, Professor
Brenda Cowan, Professor
Ted Nordlander, Professor

Christina Lyons, Chairperson

Dr. Brooke Carlson, Interim Dean, School of Graduate Studies